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Abstract. Binary theory of electronic stopping, developed recently with the aim of quantifying stopping
forces on swift heavy ions, has been applied to antiproton stopping. Essential ingredients in the theory
are inverse-Bloch and shell corrections. The numerical input consists of the excitation spectrum of the
stopping material, characterized by bundled oscillator strengths extracted from tabulated optical proper-
ties. Predicted stopping forces for eight solid materials agree well with experimental data, in particular for
Si where measurements span over two decades of projectile energy. Large discrepancies were found with
stopping data for helium extracted from annihilation time measurements.

PACS. 34.50.Bw Energy loss and stopping power – 25.43.+t Antiproton-induced reactions –
29.30.Lw Nuclear orientation devices – 52.40.Mj Particle beam interactions in plasmas

1 Introduction

Experimental data on the stopping of keV and low-MeV
antiprotons penetrating through matter have been com-
piled during the past decade [1–9]. Apart from the need for
slowing-down data in antiproton physics, the initial mo-
tivation for such measurements was to clarify the Barkas
effect, i.e., the difference in stopping between a particle
and its antiparticle. Early theoretical predictions of this
effect differed by up to a factor of two from each other
[10–13].

While that discrepancy was settled long ago it has be-
come clear that the stopping of antiprotons is a particu-
larly “clean” scattering problem from a theoretical point
of view [14]: in the absence of bound projectile states
the stopping process is dominated by Coulomb excitation
of target electrons whereas projectile screening and anti-
screening as well as electron capture and loss or projec-
tile excitation do not complicate the matter as they may
for positively charged particles. Therefore, accurate mea-
surements of antiproton stopping provide a particularly
stringent test on central aspects of stopping theory.

The basic simplicity of the stopping mechanism is in
striking contrast with the observation that the agreement
between theoretically predicted and measured antiproton
stopping forces is little more than qualitative. An exten-
sive bibliography of the theoretical literature over the past
decade may be found in reference [15]. Explicit compar-
isons with experimental data have been performed on
the basis of electron-gas models [15–19], the harmonic-
oscillator model [9,17,20,21], and three mutually comple-
mentary quantal scattering models [22]. The best agree-
ment, ∼ 10%, has been reached for silicon and aluminium

[9,15,17,18,20]. For heavier solids [9,21] and for gas tar-
gets [22] much larger discrepancies were found. For Ag
and Ti theoretical estimates were not even available [9]. It
has been noted [14,23] that part of the problem with gas
targets [5–7] may be inherent in the experimental method.

Theoretical schemes employed in estimates of antipro-
ton stopping typically invoke elaborate quantal computa-
tions. Since Coulomb excitation of target electrons up to
projectile energies ∼ 100 keV/u should be well character-
ized by a classical-orbit picture [24] and since the Barkas
effect is basically a classical polarization phenomenon [11]
it appears tempting to explore the merits of classical stop-
ping theory in this context, duly appended by a quantal
correction where necessary.

We have recently developed a binary theory of stop-
ping [25] geared toward ions heavier than helium in the
classical regime. Allowance for an “inverse-Bloch correc-
tion” [26] was found to expand the range of validity of
the theory into the Born regime, both for helium projec-
tiles and for heavier ions beyond the Bohr limit [27,28].
The present paper is devoted to exploring the capability
of that scheme to quantify antiproton stopping.

2 Fundamentals

In conventional terms the stopping force on a charged par-
ticle may be written as

−dE
dx

=
4πZ2

1Z2e
4

mv2
NL, (1)

where Z1 and Z2 denote the atomic number of projectile
and target, respectively (Z1 = −1 for antiprotons), N the
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number of target atoms per volume and v the projectile
speed. The essential physics is contained in the dimension-
less stopping number L which we write as

L = L0 + L1 + LBloch, (2)

the three terms on the right-hand side being defined as
follows,

– L0 is independent of Z1 and the leading term in a quan-
tal perturbation series in Z1 (Bethe theory or equiva-
lent). As a matter of definition, L0 is meant to incorpo-
rate shell corrections, i.e., to fully account for intrinsic
motion of target electrons,

– L1 denotes the Barkas correction which depends on
the sign of Z1 and is meant to go beyond first order in
Z1 when necessary,

– LBloch denotes the Bloch correction which is small in
the Born regime (v > 2Z1v0, v0 = Bohr velocity) but
substantial in the classical regime.

Equation (2) ignores processes involving bound pro-
jectile states which might have to be allowed for in case
of protons. Moreover a correction for recoil processes (nu-
clear stopping) is necessary at very low energies and easily
estimated by standard procedures.

The standard form of the Bloch term reads [29,30]

LBloch = −γ −<ψ
(

1− i
Z1e

2

~v

)
, (3)

where ψ denotes the logarithmic derivative of the gamma
function and γ = 0.5772 is Euler’s constant. The lack of
shell corrections in this expression is potentially serious at
low velocities and has to be kept in mind.

As long as shell corrections are neglected, L0 reduces
to the Bethe logarithm [31]

L0−→ ln
2mv2

~ω
, (4)

where ω = I/~ is a resonance frequency of the target and I
the mean excitation energy or “I-value”. Under the same
assumption L0 + LBloch reduces to the Bohr logarithm

LBohr→ ln
Cmv3

Z1e2ω
; C = 2e−γ = 1.1229 (5)

in the low-speed limit.
The stopping number L, when written in the form of

equation (2), reduces to L0 in the high-speed limit. As an
alternative we now write

L = Lbin +∆L, (6)

where Lbin denotes the prediction of the binary theory
outlined in reference [25] while ∆L denotes a correction
term. Being based on classical theory, Lbin describes the
low-speed behavior while the correction term ∆L becomes
important at high projectile speed. We note that Lbin

has been found to incorporate a reasonable Barkas cor-
rection [25], and a classical shell correction [32] can be
allowed for via kinetic theory [28,33].

From equations (2) and (6) we obtain

∆L = L0 − Lbin + L1 + LBloch (7)

which reduces to

∆L
v high→ ln

2mv2

~ω
− ln

Cmv3

Z1e2ω
− γ −<ψ

(
1− i

Z1e
2

~v

)
≡ ln

Z1e
2

~v
−<ψ

(
1− i

Z1e
2

~v

)
(8)

in the high-speed limit where Barkas and shell corrections
become negligible.

Equation (8) defines the inverse-Bloch correction men-
tioned in reference [26], a quantum correction to the bi-
nary theory ensuring proper approach to the Bethe for-
mula at high speed. We need to extend equation (8) into
the nonasymptotic region; hence a shell correction has to
be applied. Since the Bloch correction is a binary-collision
effect [30] that shell correction can be determined accu-
rately from kinetic theory [33].

In principle another term would have to be added to
equation (8), accounting for differences in the Barkas cor-
rection between classical and quantum theory. We have
found for the case of lithium ions in carbon [34] that this
difference is negligibly small around the stopping maxi-
mum. No such correction has been included in the present
scheme.

At moderate and low projectile speed a single excita-
tion frequency ω is known to be inadequate to characterize
the target. It is then necessary to allow for the excitation
spectrum with frequencies ωj weighted by the dipole os-
cillator strengths fj which are normalized according to∑
j fj = 1. With this, stopping forces may be computed

from the expression

L =
∑
j

fj{Lbin,j +∆Lj}j, (9)

where the symbol {. . . }j denotes the shell correction op-
erator in kinetic theory [33],

{Lj}j = v

∫
d3ve gj(ve)

v · (v− ve)
|v − ve|3

Lj(|v− ve|), (10)

gj(ve) represents the velocity distribution of target elec-
trons in the jth shell or subshell and Lj(v) the stopping
number of the jth target shell neglecting orbital veloci-
ties ve.

3 Binary theory

For details on binary stopping theory the reader is re-
ferred to [25]. The essential feature is the replacement of
binding of target electrons by screening of the projectile-
target interaction. This reduces the interaction to a binary
scattering process which, to a high degree of rigor, is char-
acterized by a Yukawa potential with the adiabatic radius
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taken as the screening radius. The scheme considers trans-
fer of both kinetic and potential energy.

For antiprotons, as for all point projectiles, the theory
is asymptotically equivalent to the Bohr theory [35] both
in the limit of close and distant collisions. A smooth func-
tion characterizes the energy loss at intermediate impact
parameters. Since no perturbation expansion is invoked,
higher-order Z1 terms are incorporated which were found
to be close to – yet not identical with – the known Z3

1 -
term at large impact parameters. Systematic comparisons
with measured stopping forces on heavier ions – which
are known to be sensitive to input on higher-order Z1

terms [34] – indicate that predictions of the binary theory
concerning these corrections are competitive [27,28,36].

4 Input

Binary theory determines stopping numbers Lbin,j enter-
ing into equation (9), i.e., ignoring the orbital motion of
target electrons. The prime numerical input is a set of
(fj , ωj) pairs. The choice of those pairs does not only af-
fect stopping forces on antiprotons but also predictions on
stopping of heavy ions by the respective targets. Therefore
we take this opportunity to specify our procedure – which
has been guided by previous work of Mikkelsen [20,41] –
in some detail.

Oscillator-strength spectra over a very wide energy
range can be extracted from tabulations of optical con-
stants [37,38] and X-ray scattering factors [39]. The reli-
ability of spectra extracted from either source was tested
primarily via f -sum rule and I-value. While spectra evalu-
ated from X-ray data consistently passed this test we were
unable to extract reliable spectra from references [37,38]
alone for several materials including Cu and Ag. There-
fore we adopted spectra extracted from reference [39] for
the solid materials over the full tabulated energy range,
29.3 eV ≤ E ≤ 30 000 eV. Data from references [37,38]
were employed for E < 29.3 eV.

For high-Z2 atoms the spectrum may extend signifi-
cantly beyond 30 000 eV. The choice of procedure applied
here affects the f -sum rule and in particular the calcu-
lated I-value but has no visible influence on antiproton
stopping in the velocity range considered here. For mod-
erately large Z2 such as for copper where the K-absorption
edge lies below 30 000 eV, the power law obeyed by f(E)
was extrapolated to higher energies. For high-Z2 atoms
(Ta, Pt and Au), the power law obeyed by f(E) within the
L shell was extrapolated up to the K absorption edge and
contributions from the K shell were ignored. This results
in a violation of the f -sum rule and in a significant un-
derestimate of the I-value as compared to recommended
values [40]1.

1 For consistency we have defined I = ~ω in accordance with
equation (12), with integration limits comprising the entire
data range in those cases where the f-sum rule was not ful-
filled. This definition does not affect our calculated stopping
forces but is relevant in a comparison with tabulated I-values.

Continuous spectra found in this way were then bun-
dled according to

fj =
∫ ωj2

ωj1

dωf(ω) (11)

lnωj =
1
fj

∫ ωj2

ωj1

dωf(ω) lnω. (12)

Our choice of upper and lower limit ωj2 and ωj1, respec-
tively, was guided by absorption edges, nominal occupa-
tion numbers of shells and subshells, and the grid of the
tabulated data. The lower limit ωj1 for a principal shell
was placed at an absorption edge whenever its position
was obvious from the spectrum, i.e., for inner shells. The
remaining spectrum was then divided into principal shells
in rough accordance with the nominal occupation num-
bers. Since the scheme is rather insensitive to the precise
choice of these limits – examples will be discussed below
– and since this division was done manually by trial-end-
error, deviations in fjZ2 from nominal occupation num-
bers up to ±0.5 were tolerated. A somewhat greater dif-
ference was accepted in case of Ag (cf. below).

With the exception of Ta and Pt and one each of the
spectra for Ag and Au, fj was renormalized to fulfill the
f -sum rule. The necessary change was at the few % level
in all cases.

Quite good agreement with measured stopping forces
has been found when the j-grid just reflected the prin-
cipal shells. Division into `-subshells constitutes an im-
provement mainly because shell corrections depend on the
angular-momentum quantum number `. Despite extensive
tests we have never identified discernible effects of grids
finer than the subshell level. At high projectile speed this
must be so since only the I-value enters the stopping force.
At low velocities the shell correction expressed by equa-
tion (10) tends to smear out all structure over a broad
interval [33].

Two procedures were applied to allow for `-dependent
shell corrections. The simplest is to operate with an effec-
tive `-value for each principal shell, chosen as the integer
closest to the average `-value. The second is subshell split-
ting which has been found significant only for outer shells
and was carried out in several cases, again with a tolerance
level of ±0.5 in fjZ2.

The lower limit ωj1 for the jth shell or subshell also
acts as the binding energy, i.e., the maximum amount of
potential-energy transfer to an electron in the respective
shell/subshell [25]. This is the obvious choice whenever
ωj1 coincides with an absorption edge and a reasonable
operational definition otherwise.

In a few test cases input data were taken over from [41].
Tables 1–4 show spectra employed for nine materials.

Two alternative choices were studied for Si, Al, Cu, Ag,
Au and He (Tabs. 1 and 4).

Spectra for Si and Al are taken over from [41], and
the two versions differ only in the subshell division. The
ratio of the f -values in the version to the left is that of
the nominal number of electrons in those subshells.
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Table 1. Target spectra adopted for silicon, aluminium, cop-
per, silver and gold.

(n, `) Z2f ~ω (eV) Z2f ~ω (eV)

14Si 5 shells 3 shells

(1, 0) 1.711 3178.62 1.711 3178.62

(2, 0) 2.090 248.90 8.361 248.90

(2, 1) 6.271 248.90

(3, 0) 1.964 20.26 3.928 20.26

(3, 1) 1.964 20.26

Atom 14.000 168.08 14.000 168.08

13Al 5 shells 3 shells

(1, 0) 1.753 2795.47 1.753 2795.47

(2, 0) 2.076 201.96 8.304 201.96

(2, 1) 6.228 201.96

(3, 0) 1.962 16.89 2.943 16.89

(3, 1) 0.981 16.89

Atom 13.000 164.14 13.000 164.14

29Cu 6 shells 4 shells

(1, 0) 1.454 15185.0 1.479 15716.0

(2, 1) 8.050 1667.3 7.963 1667.2

(3, 0) 1.932 606.05

(3, 1) 6.316 249.03 17.667 147.5

(3, 2) 10.154 74.41

(4, 0) 1.094 16.96 1.620 19.905

Atom 29.000 325.9 29.000 328.14

47Ag Incomplete Extrapolated

(1, 0) 0.324 27538 1.578 45840.0

(2, 1) 6.309 5825 6.142 5824.9

(3, 1) 21.367 835.3 20.710 838.5

(4, 0) 1.956 246.4 2.354 231.7

(4, 1) 6.147 91.61 6.125 87.23

(4, 2) 9.894 47.89 9.368 45.94

(5, 0) 0.985 15.13 0.723 13.419

Atom 46.982 398.0 47.000 453.7

79Au 7 shells 6 shells

(1, 0) 1.098 96235.0

(2, 1) 5.084 20101.0 6.344 25918.0

(3, 1) 19.498 3769.5 19.537 4116.0

(4, 2) 32.353 594.19 33.416 599.0

(5, 0) 2.392 150.35

(5, 1) 5.373 81.980 8.880 87.3

(5, 2) 10.401 43.015

(6, 0) 0.978 15.015 9.725 36.9

Atom 76.079 670.0 79.000 800.0

Table 2. Target spectrum adopted for titanium (Z2 = 22).

(n, `) Z2f ~ω (eV)

(1, 0) 1.571 8549.9

(2, 1) 8.290 850.59

(3, 0) 2.089 242.32

(3, 1) 6.027 67.185

(3, 2) 2.020 37.318

(4, 0) 2.003 14.987

Atom 22.000 230.7

Table 3. Target spectra for Ta and Pt. f-sum and I-value less
than nominal values because of cutoff at 30 000 eV (see text).

tantalum (Z2 = 73) platinum (Z2 = 78)

(n, `) Z2f ~ω (eV) Z2f ~ω (eV)

(2, 1) 6.035 19080.0 6.059 22244.0

(3, 1) 19.324 3096.0 18.826 3745.0

(4, 2) 32.929 415.21 31.870 623.86

(5, 1) 10.545 57.114 19.110 69.803

(6, 0) 2.804 20.398 0.599 14.174

Atom 71.637 654.1 76.464 723.0

Table 4. Target spectra adopted for helium (Z2 = 2).

(n, `) Z2f ~ω (eV) Z2f ~ω (eV)

3 shells 1 shell

(1, 0) 0.442 22.0 2.000 41.8

(1, 0) 1.482 49.0

(1, 0) 0.076 95.2

Atom 2.000 42.14 2.000 41.8

The two options for Cu originate in two independent
evaluations of the same continuous spectrum, including
extrapolation of the K shell. The main difference is in the
subshell splitting of the M shell.

Silver is the only material where the given continuous
spectrum, with a K-shell portion feasibly extrapolated be-
yond 30 000 eV, yields an f -sum greater than Z2 = 47.
The two spectra represent two feasible ways of overcom-
ing this problem. The one on the left avoids extrapo-
lation and renormalization and, consequently, underesti-
mates the contribution from the K shell. The spectrum
on the right was found by extrapolation and subsequent
renormalization.

The two spectra for gold differ significantly. The spec-
trum on the right is identical with the one employed in
reference [9]. The one on the left was evaluated by the
procedure described above with the K shell omitted and
subshell splitting applied to the O shell.
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Fig. 1. Antiprotons in Si: calculations for two sets of input
(Tab. 1) compared with experimental data from references
[1,4,9].

Tables 2 and 3 show one spectrum each for Ti, Ta and
Pt, the latter two being determined without inclusion of
the K shell.

Table 4 shows two spectra for helium. The spectrum on
the left was bundled from data compiled in reference [42]
while the one on the right operates with a single resonance
at the recommended frequency [40].

Velocity distributions of target electrons have been de-
termined via Fourier transform of tabulated atomic wave
functions [43] for the relevant subshells (n, `) as reported
previously [28].

5 Results

Figure 1 shows stopping forces in silicon calculated with
input from Table 1 compared with measurements. Both
the height and the position of the stopping maximum
are predicted accurately for both sets of input parame-
ters. The difference between the two predictions is small
and noticeable mainly in the region above the stopping
maximum.

Figure 2 includes theoretical predictions from the lit-
erature. The harmonic-oscillator model [9,20,41] shows
quite good agreement except for a slight (∼10%) under-
estimate near the stopping maximum. This is consistent
with the experience [34] that perturbation theory tends
to overestimate the Barkas effect. The nonlinear theory
of reference [15] shows a rather different behavior at low
velocities where experimental data do not yet exist, while
the close agreement of the binary prediction with the low-
velocity results of reference [16] – based on a Fermi gas
model – is striking.

Figure 3 shows the calculated stopping force and its
contributions from the three principal target shells. It is
seen that the contribution from the K shell amounts to up
to 1% in the energy range where experimental data exist.
The L shell contributes about 10% up to the stopping
maximum and competes with the M shell above ∼ 1 MeV.
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Fig. 2. Antiprotons in Si: comparison of theoretical predic-
tions [9,15,16,19] with present estimate. Experimental data as
in Figure 1.
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Fig. 3. Antiprotons in Si: contribution from principal target
shells. Input from Table 1, right part.

Figures 4 and 5 show equivalent information for alu-
minium. Similar comments apply as for Si although exper-
imental data cover a smaller energy interval. One more
theoretical prediction [18] has been included in Figure 5
which is found to run in between those of the binary the-
ory and of reference [15].

Figures 6–10 show similar comparisons for Ti, Cu, Ag,
Ta and Pt. Good absolute agreement is found in all cases
with the possible exception of a minor shift in the posi-
tion of the maximum in case of copper for both of the
spectra specified in Table 1. We note that despite some
uncertainty in the spectrum for silver, the difference be-
tween the resulting predicted stopping forces is less than
experimental error.

Figure 11 shows results for gold. It is seen that the two
spectra specified in Table 1 lead to substantially different
predictions for the stopping force. The main cause of the
difference lies in the description of the two outer shells.
The binary model with 6 shells comes close to the results
of the harmonic-oscillator model, as could be expected in
view of similar input. The binary model involving 7 shells
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Fig. 4. Antiprotons in Al: calculations for two sets of input
(Tab. 1) compared with experimental data from reference [9].

1 10 100 1000
0

100
Al

 Sorensen
 Harmonic osc.
 Arista & Lifschitz
 Nagy & Apaguy
 Arbo et al.
 Binary (5 shells)

-d
E

/d
x 

[k
eV

/ µ
m

]

Energy [keV]

Fig. 5. Antiprotons in Al: comparison of theoretical predic-
tions [9,15,16,18,19] with present estimate. Experimental data
as in Figure 4.
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Fig. 6. Antiprotons in Ti: calculation with input from Table 2
compared with experimental data from reference [9].
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Fig. 7. Antiprotons in Cu: calculations with input from Ta-
ble 2 compared with experimental data from reference [9] and
previous theoretical estimates [9,16].
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Fig. 8. Antiprotons in Ag: calculations with input from Table 2
compared with experimental data from reference [9].
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Fig. 9. Antiprotons in Ta: calculation with input from Ta-
ble 3 compared with experimental data from reference [9] and
a previous theoretical estimate [9].
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Fig. 10. Antiprotons in Pt: calculation with input from Ta-
ble 3 compared with experimental data from reference [9] and
a previous theoretical estimate [9].
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Fig. 11. Antiprotons in Au: comparison of two predictions of
the binary theory with input from Table 1 with experimen-
tal [3,9] and previous theoretical estimates [9,16].

comes about as close to the experimental results as feasi-
ble, considering the scatter of experimental data. Again,
there is very good agreement between our prediction and
the result from the electron-gas model at low speed.

Figure 12, showing the contributions from the main
shells, demonstrates the leading role of the O shell over
the entire energy range where experimental data are avail-
able. This is due to the large number of electrons in that
shell. Although the contribution from the single P electron
shows a seemingly special energy dependence, it does ap-
proaches the common

√
E variation at lower energies out-

side the interval covered by the graph.
Figure 13 shows a comparison between calculated stop-

ping forces in helium and data extracted from measure-
ments of the annihilation time of antiprotons as a func-
tion of gas pressure [6]. The complete agreement between
the two binary results confirms our experience that sub-
division of a spectrum beyond the subshell level does not
cause a noticeable change. The agreement with the results
of reference [6], on the other hand, is very poor. Although
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Fig. 12. Antiprotons in Au: contribution from principal shells.
Input from an 11-shell model similar to the left part of Table 1.
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Fig. 13. Antiprotons in He: comparison of two predictions of
the binary theory (Tab. 1) with results given in reference [6].

there is a noticeable contribution from nuclear stopping –
which has been included in the graph – this cannot be the
dominating cause of the discrepancy. In view of the good
agreement with direct measurements documented above
we believe that the present finding further supports the
question marks at the experimental method set in refer-
ences [9,14]. While it is hard to see how our calculations
could be in error by almost a factor 3 at low speed, the dis-
crepancy at the high-speed end, although smaller, appears
even more serious because of the absence of a significant
Barkas correction above 1 MeV.

6 Conclusion

We may conclude that the binary theory, duly appended
by an inverse-Bloch correction and shell corrections, re-
produces stopping forces on antiprotons in eight solid ma-
terials without the use of adjustable parameters over the
entire velocity range for which measurements have been
reported. The agreement with experimental data is within
experimental uncertainty with the possible exception of
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gold and copper. A particular strength of the theory is
the explicit inclusion of electron binding, as opposed to
free-electron models, the range of applicability of which
is limited to light target materials for that reason. Unlike
the harmonic-oscillator model, the binary theory allows
for `-dependent shell corrections. The resulting difference
is subtle for Al and Si but substantial for Au.

One might put a question mark at the validity of shell
corrections determined from atomic wave functions ap-
plied to conduction electrons, and one might argue that
the Fermi distribution should lead to a superior descrip-
tion. Despite excellent agreement with the predictions of
the Fermi-gas model at low velocities in Figures 2, 5, 7
and 11, representing a considerable variation in the out-
ermost shell, we cannot exclude the possibility of this be-
ing the origin of minor discrepancies observed for copper
and gold in Figures 7 and 11. Proper consideration of this
point, however, would have to include attention to 3d and
5d electrons, respectively, which are much larger in num-
ber than the 4s and 6s electrons, respectively. This will
eventually have to be done, but since we consider it to be
a second-order effect, and since it will unquestionably af-
fect the basic simplicity of the physical picture, this point
will be reserved to a separate study.

From the point of view of the general theory of
charged-particle stopping we find it gratifying that one
and the same theoretical procedure can reproduce stop-
ping forces for a wide variety of ions and energies. More-
over, the comparisons with experiment provide a most use-
ful test on oscillator-strength spectra applied in estimates
of heavy-ion stopping.
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